B.Sc. 1st Semester (General) Examination, 2022 (CBCS)
 Subject : Physics
 Course: CC-IN/GE-I

Time: 2 Hours

Full Marks: 40

> The figures in the right hand margin indicate full marks. didates are required to give their answers in their own words as far as practicable.

দক্শিण প্রাप্তস্থ সংখ্যাগুলি পৃর্ণমান নির্দেশক। পরীক্ষাথীদের যथাসষ্টব নিজের ভাষায় উত্তর দিতে হবে।

Group-A

বিভাগ-ক

1. Answer any five questions from the following: যেকোনো পাচটি প্রশ্নের উত্তর দাও :
(a) If $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$, Prove that \vec{A} and \vec{B} are perpendicular to each other. $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ হলে প্রমাণ করো \vec{A} এবং \vec{B} পরস্পরের উপর লম্ব।
(b) Solve the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$. $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$ অবকল সমীকরণটির সমাধান করো।
(c) Write down the equation of motion of a particle moving under central force.

কেন্দ্রগ বলের প্রভাবে গতিশীল কোনো কণার সমীকরণগলি লেখো।
(d) What is geo-stationary satellite? What is its utility?

ভূ-সমলয় উপগ্রহ कী? এর প্রয়োজনীয়তা কী?
(e) Two rotating bodies A and B of moment of inertia I_{A} and $I_{B}\left(I_{A}>I_{B}\right)$ have same kinetic energy. Which one will have greater value of angular momentum?
A এবং B দুটি ঘূর্ণায়মান বস্তুর জড়তা ভ্রামক I_{A} ఆ $I_{B}\left(I_{A}>I_{B}\right)$ । এদের গতিশক্তি সমান হলে কোন বস্টুটির কৌিিক ভরবেগ বেশি হবে?
(f) State Kepler's laws of planetary motion.

গ্রহের গতিসংক্রাষ্ত কেপলারের সৃত্রতুলি বিবৃত করো।
(g) What is simple harmonic motion? Write down its characteristics.

সরল দোলগতি কী? এর বৈশিষ্ট্যতিলি লেখো।
(h) Determine the relative velocity af two photons moving towards each other

Group- B
 विकाण -

Answer any two questions from the following.
$5 \times 2=10$
যেকোনनা पूधि প্রत्भর উত্র माও।
2. (a) Show that $\vec{A} \times(\vec{B} \times \vec{C})+\vec{B} \times(\vec{C} \times \vec{A})+\vec{C} \times(\vec{A} \times \vec{B})=\overrightarrow{0}$

मেशाज खে $\vec{A} \times(\vec{B} \times \vec{C})+\vec{B} \times(\vec{C} \times \vec{A})+\vec{C} \times(\vec{A} \times \vec{B})=\overrightarrow{0}$ ।
(b) Find the value of ' d ' such that vectors $\vec{A}=2 \hat{i}-\hat{j}+\hat{k}, \vec{B}=\hat{i}+2 \hat{j}+d \hat{k}$ and $\vec{C}=3 \hat{i}-4 \hat{j}+5 \hat{k}$ are coplanar.
$\vec{A}=2 \hat{i}-\hat{j}+\hat{k}, \quad \vec{B}=\hat{i}+2 \hat{j}+d \hat{k}$ এবং $\vec{C}=3 \hat{i}-4 \hat{j}+5 \hat{k}$ डেক্টর তিनটি সমতनীয় হলে, ' d '-এর মাन নির্ণয় করো।
3. (a) A force \vec{F} acts on a 10 kg mass. In time t_{1} and t_{2} velocity of the mass are $(4 \hat{i}+16 \hat{k}) \mathrm{m} / \mathrm{s}$ and $(8 \hat{i}+20 \hat{j}) \mathrm{m} / \mathrm{s}$ respectively. Determine the work done by the force.
10 kg ভরের উপর একটি বল \vec{F} ক্রিয়া করে। t_{1} ও t_{2} সময়ে ভরটির বেগ যथাক্রমে $(4 \hat{i}+16 \hat{k})$ মি/সে ও $(8 \hat{i}+20 \hat{j})$ মি/সে। বল দ্বারা কৃতকার্য নির্ণয় করো।
(b) Find the impulse developed by a force given by $\vec{F}=4 t \hat{i}+\left(6 t^{2}-2\right) \hat{j}+12 \hat{k} N$ from $t=0$ to $t=2 \mathrm{~s}$.
ক্রিয়াশীল বল $\vec{F}=4 t \hat{i}+\left(6 t^{2}-2\right) \hat{j}+12 \hat{k} N, t=0$ থেকে $t=2 \mathrm{~s}$ সময়ান্তরে বলের ঘাত নির্ণয় করো।
4. (a) For a variable mass system, derive the equation of motion of a rocket. পরিবর্তনশীল ভরতন্ত্রের ক্ষেত্রে রকেটের গতির সমীকরণটি নির্ণয় করো।
(b) Determine the ratio of initial mass to the mass at time when velocity of the rocket equals to the velocity of exhaust gas.
একটি রকেটের বেগ গ্যাসের নির্গম বেগের সমান হলে রকেটের প্রাথমিক ভর ও সেই অবস্থায় ভরের অনুপাত নির্ণয় করো।
5. (a) Write down two postulates of special theory of relativity.

বিশেষ আপেক্ষিকতার স্বীকার্য দুটি লেখো।
(b) Show that the distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ remain unchanged under Galilean transformation.

দেখাও যে, কোনো দুটি বিন্দু $\left(x_{1}, y_{1}, z_{1}\right)$ ও $\left(x_{2}, y_{2}, z_{2}\right)$ এর মধ্যে দূরত্ব গ্যালিলিও রূপান্তরে অপরিবর্তিত থাকে। $\frac{d^{2} y}{d x^{2}}+y=\cos 2 x$ अवकल मगीकतथाित मगाभान निर्षरता करता।
 দেখাও যে, একটি ভাসমান বস্তুর গতি সরল দোলগতীয়।
7. (a) Draw the strain-stress curve for a wire within elastic limit.

স্থিতিস্থাপক সীমার মধ্যে কোনো তারের বিকৃতি-পীড়ন লেখচিত্র অক্কন করো।
(b) Show that in case of longitudinal strain the work done per unit volume is equal to $\frac{1}{2} \times$ longitudinal strain \times longitudinal stress. সমান।
(c) Establish the relation $Y=3 k(1-2 \sigma)$, where the symbols have their usual meanings.

$$
Y=3 k(1-2 \sigma) \text { সম্পর্কটি প্রতিষ্ঠা করো, যেখানে চিহ্গুলি প্রচলিত অর্থে ব্যবহৃত। }
$$

8. (a) Show that the total kinetic energy of a system of particles about any point equals to the sum of the kinetic energy of the centre of mass and the kinetic energy of motion about the centre of mass.

দেখাও যে, নির্দিষ্ট বিন্দুর সাপেক্ষে বস্তুকণা সমষ্টির মোট গতিশক্তি বস্তুকণার ভরকেন্দ্রের গতিশক্তি ও ভরকেন্দ্রের সাপেক্ষে বস্তুকণার মোট গতিশক্তির যোগফলের সমন।
(b) A solid spherical ball is set rolling on a table. What fraction of its total energy is rotational? একটি নিরেট গোলাকার বল একটি টেবিলের উপর গড়াচ্ছে। তার মোট গতিশক্তির কত অংশ আবর্তন গতিশক্তি ?
(c) If the distance of the earth from the sun is suddenly reduced to half of the present value, then how many days will be in one year?
9. (a) Find the centre of mass of a rod of length l whose density is proportional to the distance from one end of the rod.
l দৈর্ঘ্যের একটি দত্ডের ভরকেন্দ্র নির্ণয় করো যার ঘনত্র রডের একপ্রাষ্ত থেকে দুরন্পের সমানুপাতিক।
(b) Energy of a particle $E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ constant, where v is velocity and x is position. Derive the equation of motion.
কোনো বস্তুকণার শক্তি $E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ s্রুবক, যেখানে v হল গতিবেগ এবং x বস্ৰুটির অবস্থান। গতির সমীকরণ নির্ণয় করো।
(c) If the displacement equation of a simple harmonic motion is $x=a \sin (\omega t+\phi)$, then show that the velocity (v) and acceleration (f) satisfy the equation $\omega^{2} v^{2}+f^{2}=a^{2} \omega^{4}$. $3+3+4$ একটি সরল দোলগতির সময়-সরণ সমীকরণ $x=a \sin (\omega t+\phi)$ হলে, দেখাও যে, বেগ (v) এবং ত্বরণ (f), নিম্নলিখিত $\omega^{2} v^{2}+f^{2}=a^{2} \omega^{4}$ সমীকরণটি মেনে চলে।

